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Abstract 

Elliptic curve cryptosystem (ECC) is a new generation of public key 
cryptosystems that has smaller key size for the same level of security. The 
exponentiation in elliptic curve is the most important operation in ECC, so when the 
ECC is put into practice, the major problem is how to enhance the speed of the 
exponentiation. It is thus of great interest to develop algorithms for exponentiation, 
which allow efficient implementations of ECC. 

In this paper, we improve efficient algorithm for exponentiation on elliptic curve 
defined over Fp in terms of affine coordinates. The algorithm computes 

( )2 1n n2 2 P+Q directly from random points P and Q on an elliptic curve, without 
computing the intermediate points. Moreover, we apply the algorithm to 
exponentiation on elliptic curve with Width-w Mutual Opposite Form (wMOF) and 
analyze their computational complexity. This algorithm can speed the wMOF 
exponentiation of elliptic curve of size 160-bit about (21.7%) as a result of its 
implementation with respect to affine coordinates. 
—————————————————————————————————— 
 
1. Introduction 

Elliptic curve cryptosystem, which were suggested independently by Miller [7] 
and Koblitz, it is a new generation of public key cryptosystems that has smaller key 
sizes for the same level of security. 

The elliptic curve cryptographic operations, like encryption/decryption schemes 
generation/verification signature, require computing of exponentiation on elliptic 
curve. The computational performance of elliptic curve cryptographic protocol such 
as Diffie-Hellman [4] Key Exchange protocol strongly depends on the efficiency of 
exponentiation, because it is the costliest operation. Therefore, it is very attractive to 
speed up exponentiation by providing algorithms that allow efficient implementations 
of elliptic curve cryptosystems [2, 5, 6, 8, 9, 12]. 

Binary method is one of typical methods that can speed up exponentiation by 
reducing additions, where addition of two points and doubling of two points are 
performed repeatedly. It is based on the binary representation of the exponent, so the 

                                                 
* Corresponding author, Email: msaleh@birzeit.edu 
* Copyright © 2007 IeJs-IeJEMTA. http://www.iejs.org/ 



IeJEMTA, Volume 1, 2007, 1-15 

2 

average number of addition of elliptic points operations required by the binary method 
depends on the minimal hamming weight of the exponent. 

wMOF is a base-2 representation which provide the minimal hamming weight of 
exponent. Their great advantage is that they can be generated from left-to-right which 
means, that the recoding doesn’t have to be done in a separate stage, but can be 
performed on-the-fly during the evaluation. As a result, it is no longer necessary to 
store the whole recoded exponent, but only small parts at once. 

Another approach to speed up exponentiation is by increasing the speed of 
doublings. One method to speed the doublings is direct computation of several 
doubling, which computes 2nP directly from P∈E(Fq), without computing 
intermediate points 2P,22P,…,2n-1. Sakai and Sakurai [12] proposed formulae for 
computing 2nP directly (∀n≥1) on E(Fp) in terms of affine coordinates. Since modular 
inversion is more expensive than multiplication, their formula requires only one 
inversion for computing 2nP instead of n inversions in usual add-double method. 

In this paper, we construct efficient formula to compute ( )2 1n n2 2 P+Q  directly 

from P,Q∈E(Fp), without computing intermediate points 1n22P,2 P, ,2 PL , 
1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q)L − , where n1≥1. Our formula has computational 

complexity (4n+10)M+(4n+6)S+I , where M, S and I denote multiplication, squaring 
and inversion respectively in Fp , and n=n1+n2. 

Moreover, we show in which way this new algorithm for direct computing 
( )2 1n n2 2 P+Q can be combined with wMOF exponentiation method [11]. We also 

implement wMOF exponentiation with and without this formula and discuss the 
efficiency. The result of this implementation shows that 21.7% speed increase in 
wMOF exponentiation with this formula on elliptic curve of size 160-bit. 
Let Fp denotes a prime finite field with p elements. 
We consider an elliptic curve E given by Weierstrass non-homogeneous equation: 
E: y2

 = x3
 + ax + b 

Where a, b∈ Fp, p >3, and 4a3 + 27b2 ≠ 0 (i.e. E is smooth). 
Let P1 = (x1, y1), 1 1 1P ( x , y )′ ′ ′= , n2P = n

12 P  = n n2 2(x , y )∈ E(Fp). 
Let the elliptic curve point addition and doubling be denoted by ECADD and 

ECDBL, respectively. Let M, S and I denote multiplication, squaring and inversion, 
respectively in Fp, where S=0.8M, as it is customary nowadays. Therefore, inversions 
are very costly compared to multiplications and squaring and should be avoided. 

This paper is organized as follows: In Sect. 1, we give some definitions and 
notations. In Sect. 2, we summarize pervious work. In Sect. 3, we will describe our 
algorithm for direct computing of ( )2 1n n2 2 P+Q in terms of affine coordinates. In 
Sect. 4, we use this formula in exponentiation with wMOF method, and show in what 
way this new derived formula can improve the speed of the exponentiation. In Sect. 5 
timing of our implementation will be given. Finally conclusions will be given in Sect. 
6. 
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2. Previous work 
In this section, we summarize the known algorithms for point addition, point 

doublings, and direct doublings. 
 
2.1 Point addition 

In terms of affine coordinates, point addition can be computed as follows:  
Let P1 = (x1, y1), and Q = (x, y), ≠ Ο  where Ο denotes the point at infinity, then   
P ( x , y )′ ′ ′=  can be computed as follows 
x′  = λ2 - x1 - x 
y′=λ (x1 - x′ ) - y1 

1

1

(y  - y )
 = 

(x  - x )
λ  (2.1) 

The formulae above have computational complexity S + 2M + I [1] 
 
2.2 Point doubling 

In terms of affine coordinates, point addition can be computed as follows: 
Assume Let P1 = (x1, y1) ≠ O where O denotes the point at infinity, then 2P= P2 = (x2, 
y2) can be computed as follows  
x2 =λ2 - 2x1 
y2 = λ (x1 – x2) - y1 

2 
1

1

3x a
2y

λ
+

=  (2.2) 

The formulae above have computational complexity 2S + 2M + I [2]  
 
2.3 Direct Doubling 

One method to increase the speed of doublings is direct computation of several 
doublings, which can compute 2nP directly from P∈E(Fq), without computing the 
intermediate points 2P,22P,…,2n-1 [12]. 

Guajardo and Paar [5] suggested increase doubling speed by formulating 
algorithms for direct computation of 4P, 8P, and 16P on elliptic curves over F2

m in 
terms of affine coordinates. Sakai and Sakurai [12] proposed formulae for computing 
2nP directly (∀n≥1) on E(Fp) in terms of affine coordinates. 

These formulas require only one inversion for computing 2nP instead of d 
inversions in regular add-double method. Therefore direct computation of several 
doublings may be effective in elliptic curve exponentiation because modular inversion 
is more expensive than multiplication. 
 

3. Direct Computation of 2 1n n2 (2 P + Q) in affine coordinate 

In this paper, we derive formula for computing ( )2 1n n2 2 P+Q  directly from a 

given point P, Q ∈ E(Fp) without computing the intermediate points 1n22P,2 P, ,2 PL , 
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1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q)L − , where n1≥1, in terms of affine coordinate. This 
formula can work with wMOF exponentiation method. 

We begin by constructing formula for small n1, n2, then we will construct 
algorithm for general n1, n2. 

As an example, let n1 = 2, n2 = 1, let P1 = (x1, y1), Q = (x, y), 1 1 1P ( x , y )′ ′ ′= ∈ E(Fp) 
then for an elliptic curve with weierstrass form in terms of affine coordinates 

2 1P = 2P  ′ ′ 1= 2(4P +Q) 2 2= (x , y ) ′ ′ can computed as the following: 
 
(1) Computing 14P  as in [12] 

14P  = P4 = 4 4(x , y )  can be computed as follows: 

2
4 2

0 1

Ax
( 4C C )

=  (3.1) 

2
4 3

0 1

Cy
( 4C C )

=  (3.2) 

 
(2) Computing 1(4P +Q)  

Assume 14P = 4 4(x , y ) ≠ -Q, recall from Sect. 2.1, the point addition 
then 1 1 1P ( x , y )′ ′ ′=  = 1(4P +Q)  in term of affine coordinates, can be computed as 
follows: 

3
2 0 1

2
0 1 2 0 1

C  - (4C C ) y = 
(4C C )(A  - (4C C ) x)

λ  (3.3) 

Now let 
3

2 0 1T =C ( 4C C ) y− , = − 2
2 0 1S A ( 4C C ) x , we get: 

0 1

T = 
(4C C )S

λ  (3.4) 

Substitutingλ , and 4x  into the expression for 1x′ , we find 

1x′  = 
2

2 2
0 1

T
(4C C ) S

- x- 2
2

0 1

A
( 4C C )

 (3.5) 

After simplification equation (3.5) we get: 

1x′  = 
2 2 2

2 0 1
2 2

0 1

T S (A (4C C ) x
(4C C ) S

− +  (3.6) 

Let = + 2
2 0 1M A ( 4C C ) x , we get : 

1x′  = 
2 2

2 2
0 1

T MS
(4C C ) S

−  (3.7) 

Let ′ = −2 2
0A T MS , we get: 
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1x′  = 0
2 2

0 1

A
(4C C ) S

′
 (3.8) 

Substituting λ , and 1x′  into the expression for 1y′ , we find 

1y′  = 
0 1

T
(4C C )S

0
2 2

0 1

Ax- -y
(4C C ) S

⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.9) 

After simplification we get: 

1y′  = 
3 3 2 2

0 1 0 0 1
3 3

0 1

(4C C ) yS T(A (4C C ) xS )
(4C C ) S

′− − −  (3.10) 

Let ′ ′= − − −3 3 2 2
0 0 1 0 0 1C ( 4C C ) yS T( A ( 4C C ) xS ) , we get: 

1y′  = 0
3 3

0 1

C
(4C C ) S

′
 (3.11) 

 
(3) Computing 12(4P +Q) = ′12P   

Recall from Sect. 2.2, the point doubling, then ′12P  = ′ ′ ′2 2 2P = (x , y )  in term of 
affine coordinates, can be computed as follows: 

λ=

2
0

2 2
0 1

0
3 3

0 1

A3 a
(4C C ) S

C2
(4C C ) S

⎛ ⎞′
+⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠  

(3.12) 

After simplification we get: 

λ=
2 4 4

0 0 1

0 0 1

3A a(4C C ) S
2C (4C C )S
′ +

′  
(3.13) 

Now, let ′ ′= +2 4 4
0 0 0 1B 3A a( 4C C ) S , we get: 

λ= 0

0 0 1

B
2C (4C C )S

′
′  

(3.14) 

Substituting λ , and 1x′  into the expression for ′2x , we find 

′2x  = 
2

0
2 2 2

0 0 1

B
(2C ) (4C C ) S

′

′
- 0

2 2
0 1

A2
(4C C ) S

⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.15)  

After simplification we get: 

′2x  = 
2 0 0

2
0 0
2 2 2

0 0 1

B - 8A C
(2C ) (4C C ) S

′ ′ ′

′  
(3.16) 

Let ′ ′ ′ ′2 0 0
2

1 0A  =B - 8A C , we get: 

′2x  = 1
2 2 2

0 0 1

A
(2C ) (4C C ) S

′

′  
(3.17) 
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Substitutingλ , ′1y , 1x′  and ′2x  into the expression for ′2y , we find 

′2y = 0

0 0 1

B
2C (4C C )S

′
′

0
2 2

0 1

A
(4C C ) S

⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

- 1
2 2 2

0 0 1

A
(2C ) (4C C ) S

⎛ ⎞′
⎜ ⎟⎜ ⎟′⎝ ⎠

- 0
3 3

0 1

C
(4C C ) S

′  (3.18)    

After simplification we get: 

′2y =
4 2 -0 0 00 1

3 3 3
0 0 1

-8C - B (A 4A C ) 
(2C ) (4C C ) S

′ ′ ′ ′ ′

′  
(3.19) 

Let ′ ′ ′ ′ ′ ′4 2 -0 0 01 0 1C  =-8C - B (A 4A C ) , we get finally: 

′2y = 1
3 3 3

0 0 1

C  
(2C ) (4C C ) S

′

′
 (3.20) 

The formulae above have computational complexity 18S + 22M + I 
 
3.1 The formulae Computing 2 1n n2 (2 P + Q) in Affine Coordinate 

From above formulae for direct computing 12(4P +Q) , we can easily obtain 

general formulae that allow direct computing 2 1n n2 (2 P +Q) for n1 ≥ 1.  Algorithm 3.1 
describes these formulae. 

Algorithm 3.1 Direct Computation of 2 1n n2 (2 P + Q) in affine coordinate, where 
n1 ≥ 1, and P, Q ∈ E(Fp). 

INPUT: P1= (x1, y1), Q = (x, y) ∈ E(Fp) 
OUTPUT: 4 4 4

4 4
12 2 2P  = 2 P =2 (2P +Q)= (x , y )′ ′ ′ ′ ∈ E(Fp) 

1. Compute A0 and C0 and B0 

0 1C = y  

0 1A  = x  

2
10B  =3x +a  

2. For i from 1 to n1 Compute Ai, Ci, for i from 1 to n1 -1 Compute Bi 
2 i-1 i-1

2
i i-1A =B - 8A C  

4
i-1

2 i i-1 i-1i-1iC  =-8C -B (A -4A C )  

∏2
i-1i 4

i i j
j=0

B  =3A +16 a( C )    

3. Compute the N, V, W, Z then 0A′ , 0C′  

1
1

n -1
n 2

2 i
i=0

N A (2 C ) x= − ∏  

1
1

n -1
n 2

2 i
i=0

V A (2 C ) x= + ∏  

1
1

n -1
n 3

2 i
i=0

W=C (2 C ) y− ∏  
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= ∏
1

1
k -1

k
i

i=0
Z (2 C )N  

   

′ = −

′ ′= − − −

2 2
0

3 2
0 0

A W VN

C Z y W( A Z x )  

4. 2if  (n > 0) Compute 0B′ , 2 4
0 0B 3A aZ′ ′= +  

For i from 1 to n2 Compute i iA , C  ′ ′ , for i from 1 to n2 -1 Compute iB′  
2 i i

2
i i-1A  =B - 8A C′ ′ ′ ′  

4 2 -i-1 i ii i-1 iC  =-8C - B (A 4A C )  ′ ′ ′ ′ ′ ′  
i-12 i 4 4

i i 1 j
j=0

B 3A 16 aZ ( C )−′ ′ ′= + ∏  

Compute Z, Z = 
2

2
n -1

n
i

i=0
Z(2 C )′∏  

5. Compute k k2 22 2x , y′ ′  

2
n2

n
2 2

A
x

Z

′
′ =  

2
n2

n
2 3

C
y

Z

′
′ =  

—————————————————————————————————— 
Theorem 3.1 describes the computational complexity of this formula. 
 
Theorem 3.1 In terms of affine coordinates, there exits an algorithm that computes 

2 1n n2 (2 P +Q)  at most [4(n+2) +2] M, [4(n+1) + 2]S , and I in Fp  for any point P, Q 
∈ E(Fp) where M, S and I denote multiplication, squaring and inversion respectively, 
and n = n1 + n2 . 
 
Proof  The complexity of step 1 and step 2 the same as in [12, Algorithm1]   involve 
(2M + 3S)n1 + (M+S)(n1 -1) + S  

In step 3, we first compute
1n -1

i
i=0

C∏ which takes 1n -1  multiplication. Secondly, we 

perform one squaring to compute
1

1
n -1

n 2
i

i=0
(2 C )∏ . Next, we perform one multiplication 

to compute
1

1
n -1

n 2
i

i=0
 (2 C )∏ x. Then we obtain N, and V. Next, we perform two 

multiplications, one multiplication to compute
1

1
n -1

n 2
i

i=0
(2 C ) y∏  and other to 
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compute
1 1 1

1 1 1
n -1 n -1 n -1

n n n2 3
i i i

i=0 i=0 i=0
 (2 C )(2 C ) y (2 C ) y=∏ ∏ ∏ . Then we obtain W. Third we 

perform two squaring to compute 2 2W ,N , and one multiplication to compute 2VN . 

Then we obtain 0A′ . Forth, we perform one multiplication to compute
1

1
n -1

n
i

i=0
 (2 C )N∏ . 

Then we obtain Z. Next we perform two squaring to compute 2Z ,  4Z ,and one 

multiplication to compute 3Z . Next we perform two multiplications to compute 2Z x , 
3z y , Finally we perform one multiplication to compute 2

0W( A Z x )′ − . Then we 
obtain 0C′ . The complexity of step 3 involves (n1 -1)M + 9M +5S. 

In step 1 we perform one squaring to compute 2
0A′ . Next we perform one 

multiplication to compute 4aZ ,  where 4Z  is computed in step 3. Then we obtain 0B′ . 
The complexity of step 4.1 involve M + S and the complexity of step 2 involves (2M 
+ 3S)n2 + (M+S)(n2 -1) as step 2. 

In step 3 we compute 
2n -1

i
i=0

C′∏  which takes n2-1 multiplications.  Secondly, we 

perform one multiplication to compute
2

2
n -1

n
i

i=0
Z(2 C )′∏ . Then we obtain new value for 

Z. the complexity of sub-step 3 involves n2 M. Hence, the complexity of step 4 
involves 4n2 M + 4n2 S. 

In step 5, we perform one inversion to compute -1Z  and the result is set to T. 
Next, we perform one squaring to compute T

2
. Next, we perform one multiplication to 

compute
2

2
n A T′ . Then we obtain n22x′ . Finally we perform two multiplications to 

compute
2

2
n C T T′ . Then we obtain n22y′ . The complexity of step 5 involves 3M + S + 

I.  So the complexity of above computations involve [4(n+2) +2] M, [4(n+1) + 2]S,  
where n= n1 + n2 . ■ 
 
3.2 The Break-Even Point 

For application in practice it is highly relevant to compare the complexity of our 
newly derived formulae for direct computing of n doublings separated with one 
addition and individual d doublings. The performance of the new method depends on 
the cost factor of one inversion relatively to the cost of one multiplication. For this 
purpose, we introduce, as [5], the notation of a "break even point." It is possible to 
express the time that it takes to perform one inversion in terms of the equivalent 
number of multiplication needed per inversion. Table 3.1 shows the number of 
squarings S, multiplications M, and inversions I in Fp.  
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Table 3.1 Complexity comparison: Individual doublings and one addition vs. direct 
computation of several doublings with one addition. 

Complexity Calculation 
with n Method S M I 

Break-Even 
Point 

DECDBL(4) 22 26 1 4 
4 doublings + 1 addition 10 9 5 

6.6 M < I 

DECDBL(5) 26 30 1 5 5 doublings + 1 addition 12 11 6 6 M < I 

DECDBL(w) 4w+6 4w+10 1 w w doublings + 1 addition 2w+1 2w+2 w+1
(3.6 w +12) M

w

In general let n =n1 +n2, let us denote the direct computing of 2 1n n2 (2 P +Q) by 
symbol DECDBL(n). Then our formulae can outperform the regular double and add 
algorithm if the following relation to hold: 
Cost( separate n ECDBL + ECADD) > Cost( DECDBL(n)) 

Ignoring squarings and additions and expressing the Cost function in terms of 
multiplications and inversions, we have: 
(2n M +2n S + n I + 2M + S + I ) > ( 4(n +2)M + 4(n+1)S +2M +2S + I) 

We define r = I/M (the ratio of speed between a multiplication and inversion), 
and assume that one squaring has complexity S = 0.8 M [12]. We also assume that the 
cost of field addition and multiplication by small constants can be ignored. One can 
rewrite the above expressions as: 
n r M > (2nM + 8M + 1.6n M + 4M) 
Solving for r in terms of M one obtains: 

(3.6 n +12)r > M
n

 

As we can see from Table 3.1, if a field inversion has complexity I > 7.6 M, 
direct computation of 3 doublings with one addition may be more efficient than 3 
separate doubling and one adding. 
 
3.2 Exponentiation with Direct Computation of 2 1n n2 (2 P + Q)  

By using our previous formulae for direct computation of ( )2 1n n2 2 P+Q , where 
n1 ≥ 1, and P, Q ∈ E(Fp), we can improve algorithm B.1 [11] for elliptic curve 
exponentiation with wMOF by change the step 3.2 of algorithm B.1 [11] with  a new 
step that compute ( )2 1n n2 2 P+Q directly  as in the following algorithm. 
Algorithm 3.2 Exponentiation with wMOF Using Direct Computation of 

2 1n n2 (2 P + Q)  
INPUT a non-zero t-bit binary string k, P∈ E(Fp), and the multiple of the 
point P, γ0...tw and ξ0...tw, the precomputed table look-up. 
OUTPUT exponentiation  kP. 
1. i ← t 
2. Q ← Ο 
3. While i ≥ 1 do the following 
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3.1. if (ki XOR ki-1) = 0, then do the following 
3.1.1. Q ←ECDBL(Q) 
3.1.2. i  ← i - 1 
3.2. else do the following 
3.2.1.  index  ← ((k >> (i - w)) & (2w+1 - 1)) - 2w-1 
3.2.2.  if ( i < w)      Q ← 2 i -(w-ξindex) +1 (2w-ξindex Q + γindexP) 
3.2.3  else if ( i ≥ w)  Q ← 2ξindex (2 w-ξindex Q + γindexP) 
3.2.4.  i ← i - w 
4. If i = 0 do the following 
4.1. Q ← ECDBL(Q) 
4.2. If k0 = 1 then Q ← ECADD(Q,-P) 
5. return Q 

 
In algorithm 3.2, for each window width w of wMOF, Step 3.1 performs direct 

computation of 2i-(w-ξindex) +1(2w-ξindex Q + γindexP) if (i < w) otherwise Step 3.2 performs 
direct computations of 2ξindex(2w-ξindex Q+ γindexP) if (i ≥ w), where ξindex = 0,1,…w-1,  
γindexP ={±1, ±3, ..., ±(2w-1 - 1)}. 
 
3.2 Complexity Analysis of the wMOF Method 

In this subsection, we perform an analysis of wMOF method when it used in 
conjunction with the ( )2 1n n2 2 P+Q formula. In addition, we compare the complexity 
of wMOF method, with and without formula. Moreover we derive an expression that 
predicts the theoretical improvement of the wMOF method by using the formulae, in 
terms of the ratio between inversion and multiplication times. 

Theorem 3.2 describes the complexity of algorithm B.1 [11] for computing 
exponentiation with wMOF. 
 
Theorem 3.2 In terms of affine coordinate, let P ∈ E(Fp), t-digits exponent  in 
wMOF, then the complexity of algorithm B.1 [11]  for computing kP requires on 

average (2w+4 )t (2w+3 )t (w+2 )tM + S +  I 
w+1 w+1 w+1

,where M, S and I denote 

multiplication, squaring and inversion respectively. 
 
Proof We noticed that algorithm B.1 [11] performs an ECADD operation each time 
the current digit δ

 
is non-zero, recall from theorem 4 [11] that the average non-zero 

density of wMOF is asymptotically 1
+1w

 also, one ECDBL operation is performed 

in each iteration (where i ≥ 0) to double the intermediate result. Then on average, 
algorithm B.1 [11] for computing exponentiation with wMOF requires 

tt ECDBL +  ECADD
+1w
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Recall that the computational costs for doubling and additions operations in 
affine coordinate.  Then we can rewrite previous expression as: 

t(2M + 2S + I )t  +  (2M + S + I )
+1w

 

We can rewrite previous expression in terms of M, S, and I as: 
(2 +4 )t (2 +3 )t ( +2 )tM   +  S + I 

+1 +1 +1
w w w
w w w

 ■ 

Now Theorem 3.3 describes the complexity of algorithm 3.1 for computing 
exponentiation with wMOF by using ( )2 1n n2 2 P+Q . 
 
Theorem 3.3 In terms of affine coordinate, let P ∈ E(Fp), and t-digits exponent in 
wMOF, then the complexity of algorithm 3.1  for computing kP requires on average 
4( +3 )t 4( +2 )t 2tM + S + I 

+1 +1 +1
w w
w w w

, where M, S and I denote multiplication, squaring 

and inversion respectively. 
 
Proof Recall from theorem 4 [11] that for t-digits exponent k in its wMOF, if t → ∞ 

the average non-zero density of wMOF is asymptotically 1
+1w

 and wMOF of k is 

infinity. 
Long sequence constituted from two types of blocks: 
1. b1 = (0), length of this block is 1; 
2. b2 = (0i * 0w-i-1), length of this block is w and 0 ≤ i ≤ w - 1; 

Then the number of block b2 equals 1
+1w

 because every block b2 has a non-zero 

bit, and the number of block b1 equals amount of 0s in wMOF – the amount of 0s in b2   
which equals 

1( )( )
+1 +1
w t w 1 t

w w
- -  = 

+1
t

w
 

Now, step 3.1 of algorithm 3.1 performs 
+1
1 t

w
 blocks b1 and step 3.2 performs 

+1
1 t

w
 block b2 then algorithm 3.1 for computing kP requires on average 

 ECDBL +  DECDBL( )
+1 +1
t t w

w w
 

Recall the computational costs for doublings and additions operations in affine 
coordinate. Then we can rewrite previous expression as:  

n (2M+2S+I + 4(  +2)M +4( +1)S+2M +2S+I )
+1

w w
w

 

We can rewrite previous expression in terms of M, S, and I as:  
4( +3 )t 4( +2 )t 2tM + S + I 

+1 +1 +1
w w
w w w

 ■ 
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Relative Improvement 
Let us denote the times it would take to perform exponentiation by using 

algorithms B.1 [11], and 3.1 by symbols TRegular method, TFormula method respectively. 
According to theorems B.1 [11], and 3.1, we can derive expressions for the time it 
would take to perform a whole exponentiation with wMOF as: 

TRegular  method = (2 +4 )t (2 +3 )t ( +2 )tM   +  S + I 
+1 +1 +1

w w w
w w w

 (3.21) 

TFormula  method = 4( +3 )t 4( +2 )t 2tM + S + I 
+1 +1 +1

w w
w w w

 (3.22) 

From equations 3.21, and 3.22, one can readily derive the relative improvement 
by defining r = I/M (the ratio of speed between a multiplication and inversion) as: 

Relative Improvement = Regular method Formula method

Regular method

T  - T
T

 (3.23) 

By using (3.21) and (3.22) 

Relative Improvement = [( ) ( ) ]
( ) [( ) ( ) ]

wI 2w 8 M 2w 5 S
w 2 I 2w 4 M 2w 3 S

- + + +

+ + + + +
 (3.24)  

In our implementation S ≈ M and r = 12.6, let w = 4, then 

Relative Improvement is ( )
( )

4 r 29
6 r 23

-
=

+
 (3.25) 

Relative Improvement is ( . )
( . )

4 12 6 29 100
6 12 6 23

-
=

+
= 21.7% (3.26) 

 
4. Implementation and Results 

In this section, we implement our methods and others, which have been given in 
previous sections to show the actual performance of exponentiation. Implementation 
of an ECC system have several choices, these include selection of elliptic curve 
domain parameters, platforms [2]. 
 
4.1 Elliptic Curves domain parameters and Platforms 

Generating the domain parameters for elliptic curve is vary time consuming. It 
consists of a suitably chosen elliptic curve E defined over a prime finite field Fp, and a 
base point G ∈ E(Fp). Therefore we select NIST-recommended elliptic curves domain 
parameters in [10]. We implement 4 elliptic curves over prime fields Fp, the prime 
modulo p are of a special type (generalized Mersenne numbers) with 2log p =160, 
192, 224, 256. We call these curves as P160, P192, P224, or 256 respectively. 

The ECC is implemented on a Pentium 4 personal computer (PC) with 2.0 GHz 
processor and 512 MB of RAM.  Programs were written in Java language for multi-
precision integer operations, and are ran under Windows XP. 

We used jBorZoi Library [1] in this implementation. jBorZoi is a Java Elliptic 
Curve Cryptography which implements cryptographic algorithms using elliptic curves 
defined over binary finite fields. We extended jBorZoi Library to implement 
cryptographic algorithms using elliptic curves defined over prime finite fields Fp. 
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4.2 Timings analysis of wMOF Exponentiation Method 
We performed timing measurements on the individual k doublings and one 

addition operations and the corresponding formulae for direct computation of one 
addition adjoint with k doublings. In addition, we developed timing estimates based 
on the approximately ratio of speed between a multiplication and inversion I/ M in 
prime filed Fp as presented in Table 4.1. 
 
Table 4.1 The ratio of speed between a multiplication and inversion in prime filed Fp 

Curves Average Timing 
(μsec) for M 

Average Timing (μsec) 
for S 

Average Timing 
(μsec) for I r = I / M 

P160 7.0 6.9 88.0 12.6 
P192 8.7 8.6 108.8 12.5 
P224 10 9.8 123.1 12.3 
P256 11.9 11.8 145.2 12.2 

 
4.2.1 Optimal Window Size 

To show the actual improvement of wMOF method with our new formula, we 
must find out the most efficiency proper window size, where the length of input 
binary form is 160-bits, 192-bits, 224-bits, or 256-bits. Figures (4.1- 4.4) illustrate the 
relation among the window size w, the speed of the evaluation and pre-computed 
processes. We can noticed from these Figures that when the window size increases, 
time of the evaluation will decrease, while time of the precomputation will increase, 
and the optimal w is 4 when the input is 160-bits. and the optimal w is 5 when the 
inputs is 192, 224 or 256-bits. So all the tests in this thesis will be processed for w = 4 
in 160-bits input and w = 5 for 192, 224, or 256-bits. 
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 Figure 4.1 Pre-compute and evaluation Figure 4.2 Pre-compute and evaluation 
 with 160-bits input with 192-bits input 
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 Figure 4.3 Pre-compute and evaluation Figure 4.4 Pre-compute and evaluation 
 with 224-bits input with 256-bits input 
 
4.2.2 The performance of improved wMOF method 

Using Table 4.1, we can readily predict that the timings for performing an 
exponentiation with and without the formulae presented in Algorithm 3.1. In addition, 
using the complexity shown in equations (3.21, 3.22) and the timings shown in Table 
4.1 we can make estimates as to how long an exponentiation with wMOF will take 
using both doublings with formulae and individual doublings. 
 
Table 4.2 Average time comparison required to perform an exponentiation without 
pre-computations stage of a random point in mesc (Pentium IV 2.0 GHz) 

% Improvement Curves Method Predicted 
Timing 

Measured
Timing Predicted Measured

wMOF with formula (w = 4 ) 17.4 18.3 P 160 wMOF (w = 4) 22.2 23.4 21.62 21.8 

wMOF with formula (w = 5 ) 23.8 24.3 P 192 wMOF (w = 5) 32 32.6 25.62 25.7 

wMOF with formula (w = 5) 31.7 33.9 P 224 wMOF (w = 5) 42 45 24.52 24.6 

wMOF with formula (w = 5 ) 43.8 47.4 P 256 wMOF (w = 5) 57.3 61.8 23.5 23.3 

 
Conclusion 

In this paper, we construct efficient algorithm for exponentiation on elliptic curve 
defined over Fp in terms of affine coordinates. The algorithm computes 

( )2 1d d2 2 P+Q directly from random points P and Q on an elliptic curve, without 
computing the intermediate points. Moreover, we apply the algorithm to 
exponentiation on elliptic curve with wMOF and analyze their computational 
complexity. A comparison was made based on notation of a "break even point." which 
is the cost factor of one inversion relatively to the cost of one multiplication. 

This algorithm can speed the wMOF exponentiation of elliptic curve of size 
160-bit about (21.7%) as a result of its implementation with respect to affine 
coordinates. 
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