

IeJEMTA, Volume 1, 2007, 1-15

==============================
EEEnnngggiiinnneeeeeerrriiinnnggg

&&&
MMMaaattthhheeemmmaaatttiiicccsss
==============================

Efficient Elliptic Curve Cryptosystems Using Efficient Exponentiation

Kamal Darweesh, Mohammad Saleh*
Mathematics Department & Scientific Computing Master Program, Birzeit University,

Palestine

——————————————————————————————————
Abstract

Elliptic curve cryptosystem (ECC) is a new generation of public key
cryptosystems that has smaller key size for the same level of security. The
exponentiation in elliptic curve is the most important operation in ECC, so when the
ECC is put into practice, the major problem is how to enhance the speed of the
exponentiation. It is thus of great interest to develop algorithms for exponentiation,
which allow efficient implementations of ECC.

In this paper, we improve efficient algorithm for exponentiation on elliptic curve
defined over Fp in terms of affine coordinates. The algorithm computes

()2 1n n2 2 P+Q directly from random points P and Q on an elliptic curve, without
computing the intermediate points. Moreover, we apply the algorithm to
exponentiation on elliptic curve with Width-w Mutual Opposite Form (wMOF) and
analyze their computational complexity. This algorithm can speed the wMOF
exponentiation of elliptic curve of size 160-bit about (21.7%) as a result of its
implementation with respect to affine coordinates.
——————————————————————————————————

1. Introduction

Elliptic curve cryptosystem, which were suggested independently by Miller [7]
and Koblitz, it is a new generation of public key cryptosystems that has smaller key
sizes for the same level of security.

The elliptic curve cryptographic operations, like encryption/decryption schemes
generation/verification signature, require computing of exponentiation on elliptic
curve. The computational performance of elliptic curve cryptographic protocol such
as Diffie-Hellman [4] Key Exchange protocol strongly depends on the efficiency of
exponentiation, because it is the costliest operation. Therefore, it is very attractive to
speed up exponentiation by providing algorithms that allow efficient implementations
of elliptic curve cryptosystems [2, 5, 6, 8, 9, 12].

Binary method is one of typical methods that can speed up exponentiation by
reducing additions, where addition of two points and doubling of two points are
performed repeatedly. It is based on the binary representation of the exponent, so the

* Corresponding author, Email: msaleh@birzeit.edu
* Copyright © 2007 IeJs-IeJEMTA. http://www.iejs.org/

IeJEMTA, Volume 1, 2007, 1-15

2

average number of addition of elliptic points operations required by the binary method
depends on the minimal hamming weight of the exponent.

wMOF is a base-2 representation which provide the minimal hamming weight of
exponent. Their great advantage is that they can be generated from left-to-right which
means, that the recoding doesn’t have to be done in a separate stage, but can be
performed on-the-fly during the evaluation. As a result, it is no longer necessary to
store the whole recoded exponent, but only small parts at once.

Another approach to speed up exponentiation is by increasing the speed of
doublings. One method to speed the doublings is direct computation of several
doubling, which computes 2nP directly from P∈E(Fq), without computing
intermediate points 2P,22P,…,2n-1. Sakai and Sakurai [12] proposed formulae for
computing 2nP directly (∀n≥1) on E(Fp) in terms of affine coordinates. Since modular
inversion is more expensive than multiplication, their formula requires only one
inversion for computing 2nP instead of n inversions in usual add-double method.

In this paper, we construct efficient formula to compute ()2 1n n2 2 P+Q directly

from P,Q∈E(Fp), without computing intermediate points 1n22P,2 P, ,2 PL ,
1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q)L − , where n1≥1. Our formula has computational

complexity (4n+10)M+(4n+6)S+I , where M, S and I denote multiplication, squaring
and inversion respectively in Fp , and n=n1+n2.

Moreover, we show in which way this new algorithm for direct computing
()2 1n n2 2 P+Q can be combined with wMOF exponentiation method [11]. We also

implement wMOF exponentiation with and without this formula and discuss the
efficiency. The result of this implementation shows that 21.7% speed increase in
wMOF exponentiation with this formula on elliptic curve of size 160-bit.
Let Fp denotes a prime finite field with p elements.
We consider an elliptic curve E given by Weierstrass non-homogeneous equation:
E: y2

 = x3
 + ax + b

Where a, b∈ Fp, p >3, and 4a3 + 27b2 ≠ 0 (i.e. E is smooth).
Let P1 = (x1, y1), 1 1 1P (x , y)′ ′ ′= , n2P = n

12 P = n n2 2(x , y)∈ E(Fp).
Let the elliptic curve point addition and doubling be denoted by ECADD and

ECDBL, respectively. Let M, S and I denote multiplication, squaring and inversion,
respectively in Fp, where S=0.8M, as it is customary nowadays. Therefore, inversions
are very costly compared to multiplications and squaring and should be avoided.

This paper is organized as follows: In Sect. 1, we give some definitions and
notations. In Sect. 2, we summarize pervious work. In Sect. 3, we will describe our
algorithm for direct computing of ()2 1n n2 2 P+Q in terms of affine coordinates. In
Sect. 4, we use this formula in exponentiation with wMOF method, and show in what
way this new derived formula can improve the speed of the exponentiation. In Sect. 5
timing of our implementation will be given. Finally conclusions will be given in Sect.
6.

IeJEMTA, Volume 1, 2007, 1-15

3

2. Previous work
In this section, we summarize the known algorithms for point addition, point

doublings, and direct doublings.

2.1 Point addition

In terms of affine coordinates, point addition can be computed as follows:
Let P1 = (x1, y1), and Q = (x, y), ≠ Ο where Ο denotes the point at infinity, then
P (x , y)′ ′ ′= can be computed as follows
x′ = λ2 - x1 - x
y′=λ (x1 - x′) - y1

1

1

(y - y)
 =

(x - x)
λ (2.1)

The formulae above have computational complexity S + 2M + I [1]

2.2 Point doubling

In terms of affine coordinates, point addition can be computed as follows:
Assume Let P1 = (x1, y1) ≠ O where O denotes the point at infinity, then 2P= P2 = (x2,
y2) can be computed as follows
x2 =λ2 - 2x1
y2 = λ (x1 – x2) - y1

2
1

1

3x a
2y

λ
+

= (2.2)

The formulae above have computational complexity 2S + 2M + I [2]

2.3 Direct Doubling

One method to increase the speed of doublings is direct computation of several
doublings, which can compute 2nP directly from P∈E(Fq), without computing the
intermediate points 2P,22P,…,2n-1 [12].

Guajardo and Paar [5] suggested increase doubling speed by formulating
algorithms for direct computation of 4P, 8P, and 16P on elliptic curves over F2

m in
terms of affine coordinates. Sakai and Sakurai [12] proposed formulae for computing
2nP directly (∀n≥1) on E(Fp) in terms of affine coordinates.

These formulas require only one inversion for computing 2nP instead of d
inversions in regular add-double method. Therefore direct computation of several
doublings may be effective in elliptic curve exponentiation because modular inversion
is more expensive than multiplication.

3. Direct Computation of 2 1n n2 (2 P + Q) in affine coordinate

In this paper, we derive formula for computing ()2 1n n2 2 P+Q directly from a

given point P, Q ∈ E(Fp) without computing the intermediate points 1n22P,2 P, ,2 PL ,

IeJEMTA, Volume 1, 2007, 1-15

4

1 2 1n n 1 n2(2 P+Q), ,2 (2 P+Q)L − , where n1≥1, in terms of affine coordinate. This
formula can work with wMOF exponentiation method.

We begin by constructing formula for small n1, n2, then we will construct
algorithm for general n1, n2.

As an example, let n1 = 2, n2 = 1, let P1 = (x1, y1), Q = (x, y), 1 1 1P (x , y)′ ′ ′= ∈ E(Fp)
then for an elliptic curve with weierstrass form in terms of affine coordinates

2 1P = 2P ′ ′ 1= 2(4P +Q) 2 2= (x , y) ′ ′ can computed as the following:

(1) Computing 14P as in [12]

14P = P4 = 4 4(x , y) can be computed as follows:

2
4 2

0 1

Ax
(4C C)

= (3.1)

2
4 3

0 1

Cy
(4C C)

= (3.2)

(2) Computing 1(4P +Q)

Assume 14P = 4 4(x , y) ≠ -Q, recall from Sect. 2.1, the point addition
then 1 1 1P (x , y)′ ′ ′= = 1(4P +Q) in term of affine coordinates, can be computed as
follows:

3
2 0 1

2
0 1 2 0 1

C - (4C C) y =
(4C C)(A - (4C C) x)

λ (3.3)

Now let
3

2 0 1T =C (4C C) y− , = − 2
2 0 1S A (4C C) x , we get:

0 1

T =
(4C C)S

λ (3.4)

Substitutingλ , and 4x into the expression for 1x′ , we find

1x′ =
2

2 2
0 1

T
(4C C) S

- x- 2
2

0 1

A
(4C C)

 (3.5)

After simplification equation (3.5) we get:

1x′ =
2 2 2

2 0 1
2 2

0 1

T S (A (4C C) x
(4C C) S

− + (3.6)

Let = + 2
2 0 1M A (4C C) x , we get :

1x′ =
2 2

2 2
0 1

T MS
(4C C) S

− (3.7)

Let ′ = −2 2
0A T MS , we get:

IeJEMTA, Volume 1, 2007, 1-15

5

1x′ = 0
2 2

0 1

A
(4C C) S

′
 (3.8)

Substituting λ , and 1x′ into the expression for 1y′ , we find

1y′ =
0 1

T
(4C C)S

0
2 2

0 1

Ax- -y
(4C C) S

⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.9)

After simplification we get:

1y′ =
3 3 2 2

0 1 0 0 1
3 3

0 1

(4C C) yS T(A (4C C) xS)
(4C C) S

′− − − (3.10)

Let ′ ′= − − −3 3 2 2
0 0 1 0 0 1C (4C C) yS T(A (4C C) xS) , we get:

1y′ = 0
3 3

0 1

C
(4C C) S

′
 (3.11)

(3) Computing 12(4P +Q) = ′12P

Recall from Sect. 2.2, the point doubling, then ′12P = ′ ′ ′2 2 2P = (x , y) in term of
affine coordinates, can be computed as follows:

λ=

2
0

2 2
0 1

0
3 3

0 1

A3 a
(4C C) S

C2
(4C C) S

⎛ ⎞′
+⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

(3.12)

After simplification we get:

λ=
2 4 4

0 0 1

0 0 1

3A a(4C C) S
2C (4C C)S
′ +

′
(3.13)

Now, let ′ ′= +2 4 4
0 0 0 1B 3A a(4C C) S , we get:

λ= 0

0 0 1

B
2C (4C C)S

′
′

(3.14)

Substituting λ , and 1x′ into the expression for ′2x , we find

′2x =
2

0
2 2 2

0 0 1

B
(2C) (4C C) S

′

′
- 0

2 2
0 1

A2
(4C C) S

⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.15)

After simplification we get:

′2x =
2 0 0

2
0 0
2 2 2

0 0 1

B - 8A C
(2C) (4C C) S

′ ′ ′

′
(3.16)

Let ′ ′ ′ ′2 0 0
2

1 0A =B - 8A C , we get:

′2x = 1
2 2 2

0 0 1

A
(2C) (4C C) S

′

′
(3.17)

IeJEMTA, Volume 1, 2007, 1-15

6

Substitutingλ , ′1y , 1x′ and ′2x into the expression for ′2y , we find

′2y = 0

0 0 1

B
2C (4C C)S

′
′

0
2 2

0 1

A
(4C C) S

⎛ ⎞′
⎜ ⎟⎜ ⎟
⎝ ⎠

- 1
2 2 2

0 0 1

A
(2C) (4C C) S

⎛ ⎞′
⎜ ⎟⎜ ⎟′⎝ ⎠

- 0
3 3

0 1

C
(4C C) S

′ (3.18)

After simplification we get:

′2y =
4 2 -0 0 00 1

3 3 3
0 0 1

-8C - B (A 4A C)
(2C) (4C C) S

′ ′ ′ ′ ′

′
(3.19)

Let ′ ′ ′ ′ ′ ′4 2 -0 0 01 0 1C =-8C - B (A 4A C) , we get finally:

′2y = 1
3 3 3

0 0 1

C
(2C) (4C C) S

′

′
 (3.20)

The formulae above have computational complexity 18S + 22M + I

3.1 The formulae Computing 2 1n n2 (2 P + Q) in Affine Coordinate

From above formulae for direct computing 12(4P +Q) , we can easily obtain

general formulae that allow direct computing 2 1n n2 (2 P +Q) for n1 ≥ 1. Algorithm 3.1
describes these formulae.

Algorithm 3.1 Direct Computation of 2 1n n2 (2 P + Q) in affine coordinate, where
n1 ≥ 1, and P, Q ∈ E(Fp).

INPUT: P1= (x1, y1), Q = (x, y) ∈ E(Fp)
OUTPUT: 4 4 4

4 4
12 2 2P = 2 P =2 (2P +Q)= (x , y)′ ′ ′ ′ ∈ E(Fp)

1. Compute A0 and C0 and B0

0 1C = y

0 1A = x

2
10B =3x +a

2. For i from 1 to n1 Compute Ai, Ci, for i from 1 to n1 -1 Compute Bi
2 i-1 i-1

2
i i-1A =B - 8A C

4
i-1

2 i i-1 i-1i-1iC =-8C -B (A -4A C)

∏2
i-1i 4

i i j
j=0

B =3A +16 a(C)

3. Compute the N, V, W, Z then 0A′ , 0C′

1
1

n -1
n 2

2 i
i=0

N A (2 C) x= − ∏

1
1

n -1
n 2

2 i
i=0

V A (2 C) x= + ∏

1
1

n -1
n 3

2 i
i=0

W=C (2 C) y− ∏

IeJEMTA, Volume 1, 2007, 1-15

7

= ∏
1

1
k -1

k
i

i=0
Z (2 C)N

′ = −

′ ′= − − −

2 2
0

3 2
0 0

A W VN

C Z y W(A Z x)

4. 2if (n > 0) Compute 0B′ , 2 4
0 0B 3A aZ′ ′= +

For i from 1 to n2 Compute i iA , C ′ ′ , for i from 1 to n2 -1 Compute iB′
2 i i

2
i i-1A =B - 8A C′ ′ ′ ′

4 2 -i-1 i ii i-1 iC =-8C - B (A 4A C) ′ ′ ′ ′ ′ ′
i-12 i 4 4

i i 1 j
j=0

B 3A 16 aZ (C)−′ ′ ′= + ∏

Compute Z, Z =
2

2
n -1

n
i

i=0
Z(2 C)′∏

5. Compute k k2 22 2x , y′ ′

2
n2

n
2 2

A
x

Z

′
′ =

2
n2

n
2 3

C
y

Z

′
′ =

——————————————————————————————————
Theorem 3.1 describes the computational complexity of this formula.

Theorem 3.1 In terms of affine coordinates, there exits an algorithm that computes

2 1n n2 (2 P +Q) at most [4(n+2) +2] M, [4(n+1) + 2]S , and I in Fp for any point P, Q
∈ E(Fp) where M, S and I denote multiplication, squaring and inversion respectively,
and n = n1 + n2 .

Proof The complexity of step 1 and step 2 the same as in [12, Algorithm1] involve
(2M + 3S)n1 + (M+S)(n1 -1) + S

In step 3, we first compute
1n -1

i
i=0

C∏ which takes 1n -1 multiplication. Secondly, we

perform one squaring to compute
1

1
n -1

n 2
i

i=0
(2 C)∏ . Next, we perform one multiplication

to compute
1

1
n -1

n 2
i

i=0
 (2 C)∏ x. Then we obtain N, and V. Next, we perform two

multiplications, one multiplication to compute
1

1
n -1

n 2
i

i=0
(2 C) y∏ and other to

IeJEMTA, Volume 1, 2007, 1-15

8

compute
1 1 1

1 1 1
n -1 n -1 n -1

n n n2 3
i i i

i=0 i=0 i=0
 (2 C)(2 C) y (2 C) y=∏ ∏ ∏ . Then we obtain W. Third we

perform two squaring to compute 2 2W ,N , and one multiplication to compute 2VN .

Then we obtain 0A′ . Forth, we perform one multiplication to compute
1

1
n -1

n
i

i=0
 (2 C)N∏ .

Then we obtain Z. Next we perform two squaring to compute 2Z , 4Z ,and one

multiplication to compute 3Z . Next we perform two multiplications to compute 2Z x ,
3z y , Finally we perform one multiplication to compute 2

0W(A Z x)′ − . Then we
obtain 0C′ . The complexity of step 3 involves (n1 -1)M + 9M +5S.

In step 1 we perform one squaring to compute 2
0A′ . Next we perform one

multiplication to compute 4aZ , where 4Z is computed in step 3. Then we obtain 0B′ .
The complexity of step 4.1 involve M + S and the complexity of step 2 involves (2M
+ 3S)n2 + (M+S)(n2 -1) as step 2.

In step 3 we compute
2n -1

i
i=0

C′∏ which takes n2-1 multiplications. Secondly, we

perform one multiplication to compute
2

2
n -1

n
i

i=0
Z(2 C)′∏ . Then we obtain new value for

Z. the complexity of sub-step 3 involves n2 M. Hence, the complexity of step 4
involves 4n2 M + 4n2 S.

In step 5, we perform one inversion to compute -1Z and the result is set to T.
Next, we perform one squaring to compute T

2
. Next, we perform one multiplication to

compute
2

2
n A T′ . Then we obtain n22x′ . Finally we perform two multiplications to

compute
2

2
n C T T′ . Then we obtain n22y′ . The complexity of step 5 involves 3M + S +

I. So the complexity of above computations involve [4(n+2) +2] M, [4(n+1) + 2]S,
where n= n1 + n2 . ■

3.2 The Break-Even Point

For application in practice it is highly relevant to compare the complexity of our
newly derived formulae for direct computing of n doublings separated with one
addition and individual d doublings. The performance of the new method depends on
the cost factor of one inversion relatively to the cost of one multiplication. For this
purpose, we introduce, as [5], the notation of a "break even point." It is possible to
express the time that it takes to perform one inversion in terms of the equivalent
number of multiplication needed per inversion. Table 3.1 shows the number of
squarings S, multiplications M, and inversions I in Fp.

IeJEMTA, Volume 1, 2007, 1-15

9

Table 3.1 Complexity comparison: Individual doublings and one addition vs. direct
computation of several doublings with one addition.

Complexity Calculation
with n Method S M I

Break-Even
Point

DECDBL(4) 22 26 1 4
4 doublings + 1 addition 10 9 5

6.6 M < I

DECDBL(5) 26 30 1 5 5 doublings + 1 addition 12 11 6 6 M < I

DECDBL(w) 4w+6 4w+10 1 w w doublings + 1 addition 2w+1 2w+2 w+1
(3.6 w +12) M

w

In general let n =n1 +n2, let us denote the direct computing of 2 1n n2 (2 P +Q) by
symbol DECDBL(n). Then our formulae can outperform the regular double and add
algorithm if the following relation to hold:
Cost(separate n ECDBL + ECADD) > Cost(DECDBL(n))

Ignoring squarings and additions and expressing the Cost function in terms of
multiplications and inversions, we have:
(2n M +2n S + n I + 2M + S + I) > (4(n +2)M + 4(n+1)S +2M +2S + I)

We define r = I/M (the ratio of speed between a multiplication and inversion),
and assume that one squaring has complexity S = 0.8 M [12]. We also assume that the
cost of field addition and multiplication by small constants can be ignored. One can
rewrite the above expressions as:
n r M > (2nM + 8M + 1.6n M + 4M)
Solving for r in terms of M one obtains:

(3.6 n +12)r > M
n

As we can see from Table 3.1, if a field inversion has complexity I > 7.6 M,
direct computation of 3 doublings with one addition may be more efficient than 3
separate doubling and one adding.

3.2 Exponentiation with Direct Computation of 2 1n n2 (2 P + Q)

By using our previous formulae for direct computation of ()2 1n n2 2 P+Q , where
n1 ≥ 1, and P, Q ∈ E(Fp), we can improve algorithm B.1 [11] for elliptic curve
exponentiation with wMOF by change the step 3.2 of algorithm B.1 [11] with a new
step that compute ()2 1n n2 2 P+Q directly as in the following algorithm.
Algorithm 3.2 Exponentiation with wMOF Using Direct Computation of

2 1n n2 (2 P + Q)
INPUT a non-zero t-bit binary string k, P∈ E(Fp), and the multiple of the
point P, γ0...tw and ξ0...tw, the precomputed table look-up.
OUTPUT exponentiation kP.
1. i ← t
2. Q ← Ο
3. While i ≥ 1 do the following

IeJEMTA, Volume 1, 2007, 1-15

10

3.1. if (ki XOR ki-1) = 0, then do the following
3.1.1. Q ←ECDBL(Q)
3.1.2. i ← i - 1
3.2. else do the following
3.2.1. index ← ((k >> (i - w)) & (2w+1 - 1)) - 2w-1
3.2.2. if (i < w) Q ← 2 i -(w-ξindex) +1 (2w-ξindex Q + γindexP)
3.2.3 else if (i ≥ w) Q ← 2ξindex (2 w-ξindex Q + γindexP)
3.2.4. i ← i - w
4. If i = 0 do the following
4.1. Q ← ECDBL(Q)
4.2. If k0 = 1 then Q ← ECADD(Q,-P)
5. return Q

In algorithm 3.2, for each window width w of wMOF, Step 3.1 performs direct

computation of 2i-(w-ξindex) +1(2w-ξindex Q + γindexP) if (i < w) otherwise Step 3.2 performs
direct computations of 2ξindex(2w-ξindex Q+ γindexP) if (i ≥ w), where ξindex = 0,1,…w-1,
γindexP ={±1, ±3, ..., ±(2w-1 - 1)}.

3.2 Complexity Analysis of the wMOF Method

In this subsection, we perform an analysis of wMOF method when it used in
conjunction with the ()2 1n n2 2 P+Q formula. In addition, we compare the complexity
of wMOF method, with and without formula. Moreover we derive an expression that
predicts the theoretical improvement of the wMOF method by using the formulae, in
terms of the ratio between inversion and multiplication times.

Theorem 3.2 describes the complexity of algorithm B.1 [11] for computing
exponentiation with wMOF.

Theorem 3.2 In terms of affine coordinate, let P ∈ E(Fp), t-digits exponent in
wMOF, then the complexity of algorithm B.1 [11] for computing kP requires on

average (2w+4)t (2w+3)t (w+2)tM + S + I
w+1 w+1 w+1

,where M, S and I denote

multiplication, squaring and inversion respectively.

Proof We noticed that algorithm B.1 [11] performs an ECADD operation each time
the current digit δ

is non-zero, recall from theorem 4 [11] that the average non-zero

density of wMOF is asymptotically 1
+1w

 also, one ECDBL operation is performed

in each iteration (where i ≥ 0) to double the intermediate result. Then on average,
algorithm B.1 [11] for computing exponentiation with wMOF requires

tt ECDBL + ECADD
+1w

IeJEMTA, Volume 1, 2007, 1-15

11

Recall that the computational costs for doubling and additions operations in
affine coordinate. Then we can rewrite previous expression as:

t(2M + 2S + I)t + (2M + S + I)
+1w

We can rewrite previous expression in terms of M, S, and I as:
(2 +4)t (2 +3)t (+2)tM + S + I

+1 +1 +1
w w w
w w w

 ■

Now Theorem 3.3 describes the complexity of algorithm 3.1 for computing
exponentiation with wMOF by using ()2 1n n2 2 P+Q .

Theorem 3.3 In terms of affine coordinate, let P ∈ E(Fp), and t-digits exponent in
wMOF, then the complexity of algorithm 3.1 for computing kP requires on average
4(+3)t 4(+2)t 2tM + S + I

+1 +1 +1
w w
w w w

, where M, S and I denote multiplication, squaring

and inversion respectively.

Proof Recall from theorem 4 [11] that for t-digits exponent k in its wMOF, if t → ∞

the average non-zero density of wMOF is asymptotically 1
+1w

 and wMOF of k is

infinity.
Long sequence constituted from two types of blocks:
1. b1 = (0), length of this block is 1;
2. b2 = (0i * 0w-i-1), length of this block is w and 0 ≤ i ≤ w - 1;

Then the number of block b2 equals 1
+1w

 because every block b2 has a non-zero

bit, and the number of block b1 equals amount of 0s in wMOF – the amount of 0s in b2
which equals

1()()
+1 +1
w t w 1 t

w w
- - =

+1
t

w

Now, step 3.1 of algorithm 3.1 performs
+1
1 t

w
 blocks b1 and step 3.2 performs

+1
1 t

w
 block b2 then algorithm 3.1 for computing kP requires on average

 ECDBL + DECDBL()
+1 +1
t t w

w w

Recall the computational costs for doublings and additions operations in affine
coordinate. Then we can rewrite previous expression as:

n (2M+2S+I + 4(+2)M +4(+1)S+2M +2S+I)
+1

w w
w

We can rewrite previous expression in terms of M, S, and I as:
4(+3)t 4(+2)t 2tM + S + I

+1 +1 +1
w w
w w w

 ■

IeJEMTA, Volume 1, 2007, 1-15

12

Relative Improvement
Let us denote the times it would take to perform exponentiation by using

algorithms B.1 [11], and 3.1 by symbols TRegular method, TFormula method respectively.
According to theorems B.1 [11], and 3.1, we can derive expressions for the time it
would take to perform a whole exponentiation with wMOF as:

TRegular method = (2 +4)t (2 +3)t (+2)tM + S + I
+1 +1 +1

w w w
w w w

 (3.21)

TFormula method = 4(+3)t 4(+2)t 2tM + S + I
+1 +1 +1

w w
w w w

 (3.22)

From equations 3.21, and 3.22, one can readily derive the relative improvement
by defining r = I/M (the ratio of speed between a multiplication and inversion) as:

Relative Improvement = Regular method Formula method

Regular method

T - T
T

 (3.23)

By using (3.21) and (3.22)

Relative Improvement = [() ()]
() [() ()]

wI 2w 8 M 2w 5 S
w 2 I 2w 4 M 2w 3 S

- + + +

+ + + + +
 (3.24)

In our implementation S ≈ M and r = 12.6, let w = 4, then

Relative Improvement is ()
()

4 r 29
6 r 23

-
=

+
 (3.25)

Relative Improvement is (.)
(.)

4 12 6 29 100
6 12 6 23

-
=

+
= 21.7% (3.26)

4. Implementation and Results

In this section, we implement our methods and others, which have been given in
previous sections to show the actual performance of exponentiation. Implementation
of an ECC system have several choices, these include selection of elliptic curve
domain parameters, platforms [2].

4.1 Elliptic Curves domain parameters and Platforms

Generating the domain parameters for elliptic curve is vary time consuming. It
consists of a suitably chosen elliptic curve E defined over a prime finite field Fp, and a
base point G ∈ E(Fp). Therefore we select NIST-recommended elliptic curves domain
parameters in [10]. We implement 4 elliptic curves over prime fields Fp, the prime
modulo p are of a special type (generalized Mersenne numbers) with 2log p =160,
192, 224, 256. We call these curves as P160, P192, P224, or 256 respectively.

The ECC is implemented on a Pentium 4 personal computer (PC) with 2.0 GHz
processor and 512 MB of RAM. Programs were written in Java language for multi-
precision integer operations, and are ran under Windows XP.

We used jBorZoi Library [1] in this implementation. jBorZoi is a Java Elliptic
Curve Cryptography which implements cryptographic algorithms using elliptic curves
defined over binary finite fields. We extended jBorZoi Library to implement
cryptographic algorithms using elliptic curves defined over prime finite fields Fp.

IeJEMTA, Volume 1, 2007, 1-15

13

4.2 Timings analysis of wMOF Exponentiation Method
We performed timing measurements on the individual k doublings and one

addition operations and the corresponding formulae for direct computation of one
addition adjoint with k doublings. In addition, we developed timing estimates based
on the approximately ratio of speed between a multiplication and inversion I/ M in
prime filed Fp as presented in Table 4.1.

Table 4.1 The ratio of speed between a multiplication and inversion in prime filed Fp

Curves Average Timing
(μsec) for M

Average Timing (μsec)
for S

Average Timing
(μsec) for I r = I / M

P160 7.0 6.9 88.0 12.6
P192 8.7 8.6 108.8 12.5
P224 10 9.8 123.1 12.3
P256 11.9 11.8 145.2 12.2

4.2.1 Optimal Window Size

To show the actual improvement of wMOF method with our new formula, we
must find out the most efficiency proper window size, where the length of input
binary form is 160-bits, 192-bits, 224-bits, or 256-bits. Figures (4.1- 4.4) illustrate the
relation among the window size w, the speed of the evaluation and pre-computed
processes. We can noticed from these Figures that when the window size increases,
time of the evaluation will decrease, while time of the precomputation will increase,
and the optimal w is 4 when the input is 160-bits. and the optimal w is 5 when the
inputs is 192, 224 or 256-bits. So all the tests in this thesis will be processed for w = 4
in 160-bits input and w = 5 for 192, 224, or 256-bits.

3 4 5 6
0

10

20

30

40

50

60

Ti
m

e
of

 c
om

pu
ta

tio
n

in
 m

es
c

Window Size (w)

 Precompute
 evalutaion
 sum

3 4 5 6
0

10

20

30

40

50

60

Ti
m

e
of

 c
om

pu
ta

tio
n

in
 m

es
c

Window Size (w)

 Precompute
 evalutaion
 sum

 Figure 4.1 Pre-compute and evaluation Figure 4.2 Pre-compute and evaluation
 with 160-bits input with 192-bits input

IeJEMTA, Volume 1, 2007, 1-15

14

3 4 5 6
0

10

20

30

40

50

60

Ti
m

e
of

 c
om

pu
ta

tio
n

in
 m

es
c

Window Size (w)

 Precompute
 evalutaion
 sum

3 4 5 6
0

10

20

30

40

50

60

Ti
m

e
of

 c
om

pu
ta

tio
n

in
 m

es
c

Window Size (w)

 Precompute
 evalutaion
 sum

 Figure 4.3 Pre-compute and evaluation Figure 4.4 Pre-compute and evaluation
 with 224-bits input with 256-bits input

4.2.2 The performance of improved wMOF method

Using Table 4.1, we can readily predict that the timings for performing an
exponentiation with and without the formulae presented in Algorithm 3.1. In addition,
using the complexity shown in equations (3.21, 3.22) and the timings shown in Table
4.1 we can make estimates as to how long an exponentiation with wMOF will take
using both doublings with formulae and individual doublings.

Table 4.2 Average time comparison required to perform an exponentiation without
pre-computations stage of a random point in mesc (Pentium IV 2.0 GHz)

% Improvement Curves Method Predicted
Timing

Measured
Timing Predicted Measured

wMOF with formula (w = 4) 17.4 18.3 P 160 wMOF (w = 4) 22.2 23.4 21.62 21.8

wMOF with formula (w = 5) 23.8 24.3 P 192 wMOF (w = 5) 32 32.6 25.62 25.7

wMOF with formula (w = 5) 31.7 33.9 P 224 wMOF (w = 5) 42 45 24.52 24.6

wMOF with formula (w = 5) 43.8 47.4 P 256 wMOF (w = 5) 57.3 61.8 23.5 23.3

Conclusion

In this paper, we construct efficient algorithm for exponentiation on elliptic curve
defined over Fp in terms of affine coordinates. The algorithm computes

()2 1d d2 2 P+Q directly from random points P and Q on an elliptic curve, without
computing the intermediate points. Moreover, we apply the algorithm to
exponentiation on elliptic curve with wMOF and analyze their computational
complexity. A comparison was made based on notation of a "break even point." which
is the cost factor of one inversion relatively to the cost of one multiplication.

This algorithm can speed the wMOF exponentiation of elliptic curve of size
160-bit about (21.7%) as a result of its implementation with respect to affine
coordinates.

IeJEMTA, Volume 1, 2007, 1-15

15

References
[1] borzoi 1.02 - an open source Elliptic Curve Cryptography Library by Dragongate

Technologies Ltd., April 2004. http://www.dragongate-technologies.com.
[2] M. Brown, D. Hankerson, J. Lopez, A. Menezes, Software Implementation of the

NIST Elliptic Curves Over Prime Fields, Topics in Cryptology - CT-RSA 2001,
LNCS 2020 (2001) 250-265.

[3] H. Cohen, A. Miyaji, T. Ono, Efficient Elliptic Curve Exponentiation Using
Mixed Coordinates, Advances in Cryptology – ASIACRYPT ’98, LNCS 1514,
Springer (1998) 51-65.

[4] W. Diffie, M. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory, IT-22(6) (1976) 644-654.

[5] J. Guajardo, C. Paar, Efficient Algorithms for Elliptic Curves Cryptosystem,
Advances in Cryptography-CRYPTO'97, LNCS, 1294(1997), Springer-Verlage
342-356.

[6] K. Koyama, Y. Tsuruoka, Speeding Up Elliptic Curve Cryptosystems using a
Signed Binary Windows Method, Advances in Cryptology-CRYPTO’92,
LNCS740 (1992) 345-357.

[7] V.S. Miller, Use of Elliptic Curves in Cryptography, Advances in Cryptology -
CRYPTO’85, LNCS 218, Springer (1986) 417-426.

[8] A. Miyaji, T. Ono, H. Cohen, Efficient Elliptic Curve Exponentiation,
Information and Communication Security - ICICS 1997, LNCS 1334, Springer
(1997) 282-291.

[9] B. Moller, Improved Techiques for Fast Exponentiation Information Security and
Cryptology - ICISC 2002, LNCS 2587, Springer (2003) 298-312.

[10] National Institute of Standard and Technology, Digital Signature Standard, FIPS
Publication 186-2, February 2000.

[11] K. Okeya, K. Schmidt-Samoa, C. Spahn, T. Takagi, Signed Binary
Representations Revisited, Advances in Cryptology – CRYPTO 2004, LNCS
3152, Springer (2004) 123-139.

[12] Y. Sakai, K. Sakurai, Efficient Scalar Multiplications on Elliptic Curves with
Direct Computations of Several Doublings. IEICE Tranc. Fundamentals,
E84-A(1) (2001) 120-129.

